
About GravSim v0.2
by Adam Wight

This is the first program I’ve ever distributed (welll, it’s the
second version) in 13 years (my age), so smile! This program is
email-ware, but if you don’t have Internet access, plEasE mail me
sumthing (to help pay for my e-mail address, etc.) at

1448 Fernside Blvd.,
Alameda, CA,
94501 (USA),

if you do have e-mail access, it would be really great if you could
just write one message so I know at least someone got my
program. Feel a lot more than free to distribute this! I would be
delighted to trade source code with anyone else!!!!!
(emphasized enough???)

If I get enough response so that I know the world would
appreciate a new version, it will probably include more
dimensions, throwing the ball with the mouse, wind, air
resistance, friction while rolling, and more user “modificability”
(easy to modify, I like making up words).

The reason I wrote this is because I was depressed at how
few good or fun non-commercial scientific programs there are for
the Mac.

I don’t have my solver working yet, and I still can’t display
the values of the sliders, but E-mail me if you want to negotiate
for the source code (hehehehehe).

If you know assembly, I think you should at least be able to
use my code, because you probably spent years to learn it. The
only thing you can’t do is charge for it. My brand new only ever E-
mail address is:

adamw@holonet.net
Now, the program:

The Program
This program is a real-time, but not real-gravity simulator. To

make “real gravity”, on a 72-dpi screen, the pixel/s/s acceleration
would have to be ≈2834.64, so: not real gravity.

Anyway, you can drag the ball with the mouse and drop it
my releasing the mouse button. If you hold down the shift key,
you can “throw” the ball. the line that you see is what the ball’s

vector will be when you let go.

You can change it’s shape by editing PICT resource 128. My
program can even handle a picture that is a different size!!! Just
make sure that the PICT’s rectangle is as small against the picture
as it can get.

The “gravity” slider controls the gravity’s force on the ball in
units of pixel/s/s acceleration. It goes from 1 to 100.

The “Coefficient of Restitution” (call it COR!!) slider controls
the percent of the velocity that is conserved on a bounce. The
velocity after bouncing is vbefore*the coefficient of restitution. A
good example is, if you hit a golf ball with the club, the COR is
around 1. If you hit a wool sweater, it’s around 0.

The “ruler” on the right is so that you can see how high the
ball is bouncing. They are increments if 5 pixels.

The “Here, good smiley” button homes the smiley when it
gets lost.

The ball bounces in real-time, no matter what’s happening
(unless you use one of my program’s dialog boxes, since they
reset the timer on purpose), so it should bounce exactly the same
on any Mac.

The menu item “Animation…” in the “Characteristics” menu
brings up a dialog box that looks like this:

What it means is that my program doesn’t update if it
already updated a certain amount of time ago. This sets that
variable in 1/60ths of a second. It’s most useful if you’re using a
‘slow’ machine, then you probably want to set it to 0, so it
updates every chance it can get.

I would also REALLY appreciate it if anyone could help me
with my animation, and turning pascal strings into C doubles!!!
They are really bad.

Known Bugs
Since the program uses real time, if it doesn’t get an update

for long enough (like if you use the disk while it’s in the
background) it will gain huge velocity. To home it, press the “Here,
good smiley” button.

If the COR is 1 and the gravity is high enough, the ball will
actually gain velocity instead of losing it.

Due to some very strange rounding off, the ball can get
stuck on the left side sometimes (rarely (Whew! (I love nesting
parentheses)))
Some things to do

Drop things around the house on VERY hard surfaces (the
harder the surface, the higher the COR, I think) and measure how
high they bounce compared to the first time. You can use the
formula I labored on for hours (don’t be worried, I’m not) to
calculate the COR. It is:

-√(2ghi)
√(2ghf)

Looks simple, doesn’t it???!!!! Anyway, g is the gravitational
constant (which, by the way, isn’t actually a constant), which is
9.8 m/s/s acceleration, and h is the height. The subscript ‘i’ means
where you drop it from, and ‘f’ means the top of the first bounce.

HAVE FUN!!! (and e-mail me)
adamw@holonet.net

